Email updates

Keep up to date with the latest news and content from Investigative Genetics and BioMed Central.

Open Access Research

High diversity and no significant selection signal of human ADH1B gene in Tibet

Yan Lu1, Longli Kang12, Kang Hu2, Chuanchao Wang1, Xiaoji Sun1, Feng Chen2, Judith R Kidd3, Kenneth K Kidd3 and Hui Li123*

Author Affiliations

1 State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China

2 Tibet University for Nationalities, Xianyang, Shaanxi, China

3 Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA

For all author emails, please log on.

Investigative Genetics 2012, 3:23  doi:10.1186/2041-2223-3-23

Published: 23 November 2012

Abstract

Background

ADH1B is one of the most studied human genes with many polymorphic sites. One of the single nucleotide polymorphism (SNP), rs1229984, coding for the Arg48His substitution, have been associated with many serious diseases including alcoholism and cancers of the digestive system. The derived allele, ADH1B*48His, reaches high frequency only in East Asia and Southwest Asia, and is highly associated with agriculture. Micro-evolutionary study has defined seven haplogroups for ADH1B based on seven SNPs encompassing the gene. Three of those haplogroups, H5, H6, and H7, contain the ADH1B*48His allele. H5 occurs in Southwest Asia and the other two are found in East Asia. H7 is derived from H6 by the derived allele of rs3811801. The H7 haplotype has been shown to have undergone significant positive selection in Han Chinese, Hmong, Koreans, Japanese, Khazak, Mongols, and so on.

Methods

In the present study, we tested whether Tibetans also showed evidence for selection by typing 23 SNPs in the region covering the ADH1B gene in 1,175 individuals from 12 Tibetan populations representing all districts of the Tibet Autonomous Region. Multiple statistics were estimated to examine the gene diversities and positive selection signals among the Tibetans and other populations in East Asia.

Results

The larger Tibetan populations (Qamdo, Lhasa, Nagqu, Nyingchi, Shannan, and Shigatse) comprised mostly farmers, have around 12% of H7, and 2% of H6. The smaller populations, living on hunting or recently switched to farming, have lower H7 frequencies (Tingri 9%, Gongbo 8%, Monba and Sherpa 6%). Luoba (2%) and Deng (0%) have even lower frequencies. Long-range haplotype analyses revealed very weak signals of positive selection for H7 among Tibetans. Interestingly, the haplotype diversity of H7 is higher in Tibetans than in any other populations studied, indicating a longer diversification history for that haplogroup in Tibetans. Network analysis on the long-range haplotypes revealed that H7 in the Han Chinese did not come from the Tibetans but from a common ancestor of the two populations.

Conclusions

We argue that H7 of ADH1B originated in the ancestors of Sino-Tibetan populations and flowed to Tibetans very early. However, as Tibetans depend less on crops, and therefore were not significantly affected by selection. Thus, H7 has not risen to a high frequency, whereas the diversity of the haplogroup has accumulated to a very high level.